
MANU & KIT

Travel Through Time
in Detail

MANU & KIT

Travel Through Time
in Detail

The book about how we made the game Travel Through Time Volume 1: Northern Lights
for the ZX Spectrum computer.

English edition (v1.01) by A.M.

1

1.

The original game design was entirely
dedicated to one well-known car brand. In the
end, we removed all references to car names
(we will not mention them in the book either)
to avoid claims from copyright holders, and
also added other cars and other vehicles.

2.

3.

Creating computer games is a wickedly
fascinating process. When working on a large
project, a huge number of questions and
challenges always arise – ones whose
solutions you won’t find in books like “How
to Write a Game in Assembly”. Our book will
not teach you how to program, but – we are
sure – it will be very interesting to anyone
who has played our games and wondered
“How did they do that?”

The facts are presented in the book in random
order. Some other games related to the Travel
Through Time series (hereinafter sometimes
referred to as TTT) are also mentioned, as
well as details that did not make it into the
final version of the game.

The first version of the splash screen has been
preserved, as well as a very grand description
of the original project:

“The first racing game for ZX Spectrum with
photorealistic road graphics. It’s time to
forget about striped fields and track curbs,
monotonous levels and roadside objects that
sprout up like mushrooms. The tracks in this
game are truly alive. Forests and open spaces,
hills, cliffs and rock walls, tunnels,
intersections, functioning petrol stations,
settlements with different types of buildings,

bridges and even... a working railway
crossing! What else have you not seen in
racing games on ZX Spectrum? There are all
kinds of competitions on offer: time trials,
duels, mass starts and even orienteering,
based on real maps of areas in Sweden. And
yes, in this type of competition, intersections
are fully functional. The points earned in the
races are used to upgrade the car. All spare
parts have a certain degree of influence on
handling, acceleration and maximum speed.
In addition, a separate upgrade procedure has
been implemented for the turbo, with even
more parameters. When a new car appears,
the turbo is transferred to it, and its
parameters are preserved”.

As you can see, not all of the original ideas
were implemented (some of them – for
example, the upgrade – did not fit into the
final concept), but many other interesting
details appeared.

The game uses more than a dozen graphic
formats and output procedures – for each
element, the most efficient methods of output
and data storage are used. For example,
rendering the player’s car and rendering the
posts on the road is done by one procedure,
but the opponents’ cars is done by a
completely different one, as it requires
automasks (autocalculated transparency
masks), pixel-precise positioning, clipping,
and vertical scaling (to a small extent).
Separate procedures are used for panoramic
shots, objects “popping up” from behind the
horizon, trees in the middle ground, colour
sprites in the interface and cutscenes, large
character images, and so on.

Like in DRIFT!, all in-game cars, as well as
some of the competitors’ cars, were first
prepared as 3D models, and then rendered
from different angles. The models were
detailed with ease of subsequent rendering in
mind.

2

4. 5.

When rendering the cars, we used our own
utility for converting 3D models into pixel
art. We had previously used this program,
called Ze3dex, when creating the game
DRIFT! It allows to render virtually any
source model in pixels, but it works
significantly better with specially prepared
models having a small number of polygons
and an emphasis on the necessary structural
elements.

This method is fundamentally different from
the typical case, where it’s not the model
that’s converted, but its render (visualization).
Below, we show how the image would look
with a typical graphics conversion, and how it
looks with a model conversion.

Nevertheless, while large images, the size of a
ZX Spectrum screen, produced using this
program are initially of acceptable quality,
sprites such as those in Travel Through Time
require substantial reworking. In this game,
they have effectively been redrawn from
scratch.

The graphic format used for the player’s cars
and roadside objects is quite interesting. It
was originally developed for this game, hence
its name: Travel through Time Sprite (.tts).
Before the game was released, we had already
used it in other games – DRIFT! and Maureen
Miles (known as Just a Gal in the ZOSYA
release). A sprite editor was written for it.

The essence of this format is that sprites are
composed of individual parts of varying sizes,
which may or may not use a mask. This
allows sprites with complex shapes to be
stored in a very compact form, and the output
uses a set of procedures that are optimal for
each sprite fragment. There is a subroutine for
outputting a 1-character-wide fragment
without a mask, one for the same character
but with a mask, another pair of procedures
doing the same but with mirror imaging;
another set of routines doing the same tasks
on 2-character-wide sprites... It looks
cumbersome, but it works very quickly.

3

6.

7.

There are limitations: for example, in TTT, we
use a fragment width equal to 1, 2, or 4
character cells, and the height is always a
multiple of 2 lines, as is the vertical
positioning of a sprite in the game. One can
also decide that a certain fragment variant in
the game (say, 2 characters wide with a mask
and mirroring) will never be used, and thus
remove the unneeded procedures from the
code.

But there’s more to this format. It also allows
to save “columns” consisting of a pair of
repeating bytes as sprite fragments – and this
is not only very compact, but also allows to
change the height of this column when
rendering the sprite. As you might guess, this
is ideal for displaying roadside posts.
Moreover, for the subsequent pieces of the
sprite, one can use positioning at the top of
the last column, or with an additional offset.

An interesting format, in general. However,
its drawbacks are significant: the horizontal
positioning resolution is limited to character
cells, and sprite cropping is difficult to
implement.

As mentioned above, the roadside objects use
the same sprite format as the player’s cars. It
doesn’t support on-the-fly horizontal offsets
(procedural offsets are, in any case, a very
poor option for these objects due to their slow
rendering speed), so the offsets are pre-
drawn.

For the furthest sprites 4 horizontal offset
options are drawn, then 2, and 1 value for the
closest sprite. This is because the horizontal
movement of distant poles is much slower
than that of nearby ones, requiring more
precise positioning. This solution can be
found in other racing games as well.

The middle section of the poles is made of a
pair of repeating pixels (the principle is
described above). When the sprite is
rendered, the initial height is adjusted based
on the distance to the object.

You can also notice that for some offset
sprites, certain small details are simply
ignored to avoid wasting space. This is also a
kind of optimization – it’s completely
unnoticeable in the game.

Masks are used where necessary.

Left and right variants are used for streetlights
and turn signs. Other roadside objects on the
left and right sides of the road are identical. In
Rubinho Cucaracha and Travel Unlimited,
lampposts also use a single variant for both
sides of the road.

To ensure everything fits in memory, much of
the data is stored in compressed form and is
uncompressed as needed. Both a standard
packer and custom packing methods are used
for different data types. For example, for the
text a token system is used.

4

8.

9.

This game screen mockup was the starting
point for game development.

It was noted how the depiction of roads and
surrounding objects in racing games for the
ZX Spectrum is usually far from reality and
generally very arbitrary. This hastily
converted photograph served as the basis for
the layout:

Subsequent work on the game was conducted
with this model in mind, as it presented a
completely different atmosphere compared to
all existing games. We attempted to capture
this atmosphere within the game, taking into
account the existing technical limitations. For
example, we depicted the dark outlines of
trees slowly floating in the middle ground, the
rather jagged roadside (in this case, our
engine’s capabilities perfectly matched the
original image), and overall, the imagery in
our game – with its black fills – leans toward
closed spaces, something rarely seen in racing
games for the ZX Spectrum. This makes the
occasional panoramic views on the horizon
all the more interesting.

Of course, not everything could be
implemented in full accordance with the
original layout. For example, it would have
been very difficult to create the hilly terrain
behind the roadside with houses and trees on
it (all of this in motion and at a decent speed).
We carried out some work to simplify the
image.

...Well, can we at least put some stone
boulders at the very beginning of the race?
That way, we don’t need to draw a large
number of variants at different scales.

In the end, the game only included one dark
rocky ridge along the road, which for some
reason appears in a single level, the 45th.

So, in addition to typical roadside objects, the
TRAVEL engine uses a kind of “middle
ground”. This is a unique element not found
in other games: objects in the distance that
move slower than roadside posts, but still
appear and disappear off-screen, unlike the
fixed background. There are two types of
such objects: trees that almost blend into the
background, and buildings and structures that
“pop up” from behind the horizon.

5

10.

Another unique feature of this game, which
has already been mentioned, is the panoramic
views. These are a set of detailed images that
sometimes appear on the horizon instead of
the standard backgrounds. Unlike the latter,
they unfortunately do not move horizontally,
but they create an unparalleled atmosphere.

As for edge cropping, it can be either
automatic or forced. This is for cases where
the car’s center is so far to the left of the
screen that it rolls over to the right. But the
engine knows that the car is still on the left,
and it needs to be cropped on the left.

In addition, if necessary, the discreteness of
the horizontal positioning can be adjusted.

A simple, linear sprite format without masks
is used to depict opponents’ cars (as well as in
cutscenes and for other purposes). The beauty
of this approach lies in the sprite rendering
process: it utilizes precise, per-pixel
positioning both horizontally and vertically,
an automatic mask, screen-edge cropping, and
the ability to vertically scale the sprite. Given
all the functionality and the ability to scroll
sprites of any width on the fly, the process
obviously can’t be “hyperfast”. Nevertheless,
it handles the needs of our engine perfectly.
After all, at a large scale, we typically see
only one opponent, while the remaining
sprites, if any, are much smaller and rendered
quickly.

Some other objects, such as overpasses under
which cars pass, while not entirely unique,
also have interesting features. All such
objects will be discussed below.

Sprites are vertically scaled as follows: a
counter is incremented with each sprite line,
and if it reaches a preset threshold value, it is
reset to zero and the line is duplicated. Thus,
the maximum scaling (2x) will occur at a
threshold value of 1.

11.

With a value of 2, the sprite will be 1½ times
its height, as every second line of the original
sprite will be duplicated. The game uses
moderate threshold values, greater than 8.
Scaling is only performed for the “closest”
and largest sprites. A value of -1 (255), or any
other value greater than the height of the
sprite, disables scaling. Stretching the sprite
looks ugly if the duplicated lines fall on areas
of the sprite with horizontal lines.

Knowing in advance the scale values ​​to use
can help to draw a sprite more effectively.

Some appear only once in the game, while
others are repeated. The object index is
specified in the level header if such entity is
present on the track.

These objects always appear on an incline,
when the road gently turns right, and they
therefore always move left and up, eventually
disappearing behind the left curb. They are
also drawn with a perspective that suits their
placement. They are not scalable.

If, at the beginning of work on these objects,
we had already been using a procedure for
sprites with automasking and pixel-by-pixel
positioning, we would certainly have used it
to render them. But instead, we set ourselves
the ambitious goal of implementing very fast
rendering with smooth movement. As a
result, a large buffer is used for them, where
copies of the sprite with offsets are prepared
in advance.

In the end, the needle was drawn using vector
graphics. A special utility was written to
calculate the segment coordinates. The
resulting table was inserted into the program
code. The needle has 62 positions, which is
more discrete than the speed value change. It
is redrawn directly on the screen, and the
previous position is deleted. To minimize
engine lag, the procedure is performed every
other frame, and, of course, only if the
needle’s position has changed.

Interestingly, the coordinates of the inner
point, which changes over a small range, are
written more compactly in the table – as a
single byte. This doesn’t offer much benefit,
as such a record still needs to be interpreted
by the program.

6

12.

13.

14.

The first working versions of the engine
didn’t yet use this format, and the coarse
movement of opponents’ cars on the screen
(as far as the .tts format allowed) was a
stumbling block for further development.
Imagine cars leaving the start line in a “stair-
step” pattern. Maintaining precomputed
offsets for each scale of each car is
prohibitively expensive.

To create visual variety, the game uses a set
of mid-ground objects appearing from beyond
the horizon. There are 16 of them in total:

Initially, we wanted to make the speedometer
needle using raster graphics. We changed our
minds after estimating the required number of
sprites.

Furthermore, their rendering uses separate
routines that include the necessary cropping
capabilities. It’s safe to say that our initial
approach was extremely suboptimal. Even if
rendering a sprite with an automask and on-
the-fly offset is slower, it wouldn’t be
noticeable for such a rare, short sequence.
This approach would have allowed to save a
significant amount of space, which we could
have used increase the rendering capabilities.
It would have been possible to draw objects
on the right, and even to apply some scaling.

In general, the objects are good, but the
procedures are not optimal.

7

15. 16.
The token system used for text packaging
includes the Tokenus utility, which was
written during the development of this game.

It can automatically identify the most
common two-character combinations in the
source text (for best results, you need to feed
it the most complete set of texts used in the
game possible), and also allows you to add
other combinations of letters of varying
lengths. In our case, we added function words
such as “the”, “are”, “you”, “here”, “what”,
and so on, the names of all the characters, as
well as words specific to our game, such as
“racing” or “time”. A total of up to 128
combinations can be specified. (The other 128
byte values are reserved for letters, other
symbols, and control codes.) After that, the
program converts the source texts into a more
compact form using the indices of the
described tokens.

Accordingly, the parser in our game’s code
must also know all these letter combinations
and their indices in order to decode the text. It
should be noted that this method is only
effective when there is a large amount of text
and direct access to it is required. (After all,
the parser and token set take up a lot of
space!) But this suits us just fine. A typical
packer would handle the task more
efficiently, but it would require unpacking a
large block of text into a separate buffer,
which is usually very inconvenient.

All road signs in the game, except for turn-
direction signs, are of the same type: warning
signs. They consist of two sprites: a blank
sign on a pole and an image – a pictogram.

The horizontal positioning of the sign is less
precise than for posts. This is due to the need
to display pictograms, all of which are
presented in a single version, without offsets
and at the same scale.

At the furthest distance, the pictogram is not
displayed (there is a kind of abstract image),
and the sign is positioned with an accuracy of
4 pixels. For the other two scale options,
horizontal positioning is precise, and only one
version of the pictogram is displayed on the
sign.

Most pictograms are 1 character wide and 8
pixels high or less. Only the “Road narrowing
(on both sides)” sign did not fit into this size
and uses an additional character with a mask.

The last four pictograms, starting with “Other
dangers”, are not used in the game; they are
not included in the sprite set. Initially, there
was an idea to include deer crossing the road
in the distance (of course, not every time after
the sign, which would be completely
ridiculous) and intersections, but this had to
be left for the next games in the series.

8

18.

19.

20.

21.

Incidentally, the first mock-up showed the
road sign not on the road itself, but on the
interface panel. This is exactly the technique
used in our game Knights of the Night Roads.
And some of the icons migrated to TTT from
there:

The number of objects on the roadside in the
game is quite small. In addition to two types
of signs, these include: lamps, power line
poles, small posts, bushes, and bridge
supports.

And we see them already in the first levels.
Isn’t that a bit sparse for such a long game?
Actually, we did it deliberately. In many
racing games of the 8-bit era, roadside objects
change from level to level: the fir trees of the
first level are replaced by cacti in the second,
the background of the road changes from
green to yellow, and rocks appear on the
horizon instead of forests. Rubinho
Cucaracha, for example, uses this classic
scheme.

But in TTT, we decided to achieve variety in a
different way: using a set of mid-ground
objects and unique panoramas, changing the
visible landscape from closed to open,
gradually adding elements such as
overpasses, tunnels, rivers, and so on. The
colour attributes are, of course, also different
for different levels, and there is also night and
winter. And if the appearance of the
streetlights along the road changed on some
levels, it would have little effect on the
overall diversity. We decided that instead, it
would be better to add another panoramic
view.

The sprites depicting the bushes are rendered
on a black background and without masks, to
save memory and improve performance. The
game is designed so that they are displayed
exclusively against dark ground or water.
They cannot be displayed on slopes, as then,
against a light sky, they would appear as
black rectangles with a pattern, like this:

In Crazy Cars II / F40 Pursuit Simulator,
typical power poles are depicted along the
road on most platforms, but on the Atari ST,
for example, we see wires strung between the
poles. We tried a similar approach for TTT.
We already had a line-drawing procedure, and
the detection of the pole tops was also used
for certain purposes. The biggest problem
would have been the wires extending off-
screen as the car passed a pole. Some early
work was done on implementing these
procedures, but we abandoned it early on
because it looked very unsightly given the
specific nature of our poles. The result was
very flat (literally, since the pole tops on the
screen are at similar heights for all distances),
jerky, and generally looked like a display
defect. Pity, because it seemed like an
interesting idea.

We debated for a long time whether to make
the game a single entity or split it into two
separately downloadable parts. The obvious
advantage of the second approach was that we
could fit in more graphics for cutscenes and
background objects, increase the number of
cutscenes, dialogues and levels, and at the
same time, one part would load faster than the
whole game.

17.

9

22.

23.

24.

This immediately led to a disadvantage: both
parts together would take up much more than
128 kilobytes, and a significant part of the
code would simply be duplicated. We also
saw several other disadvantages of dividing
the game into two parts related to the plot.
Finally, the title “Travel Through Time
Volume 1: Northern Lights, Part 1” seemed a
bit of a mouthful.

To avoid the shadow to appear to be “glued”
to the car, we increased the shadow when
jumping by simply drawing a single short
black (or rather, pixel-filled) stripe in a fixed
location on the game screen – on the second
line from the bottom in the centre. Why the
second line? Because the texture of the first
line at the bottom of the roadside is already
black.

There are no jumps in the game (except for
small bounces on uneven surfaces), so the
shadow is one with the car sprite. It was
already made in the original 3D models. In
newer versions of the engine (for example, in
the spin-off Travel Unlimited), jumps were
added, and the shadow “separates” from the
car only for those sprites that depict the car in
mid-air.

And in the second part of the main TTT
series, the jumps are even more refined: your
opponents’ cars also jump, and the bumps in
the road (which are not very noticeable in
Travel Unlimited) are depicted with a
smoothly changing texture.

At low speeds, the player’s car sways back
and forth when it’s on the margin of the road
(or on uneven roads), and at medium and high
speeds, it starts to bounce by two pixels. We
probably would have made it just one pixel,
but... remember the capabilities of the .tts
format.

It’s a small thing, but improves how it looks.
However, on hills, when the car moves
slightly upward, we stop using this technique.

The falling star in the opening scene is not a
sprite, but procedurally generated.

10

25.

26.

It’s worth mentioning that in the 8-bit era,
there were a wide variety of car racing
gameplay options, with different camera
angles and gameplay representation
principles. Even if we ignore top-down, side-
on (there were those, too), and isometric
views, and focus on the typical behind-the-car
or inside-the-car view, three main types can
still be distinguished:

1) The perspective is constant, the camera
always moves along the road centered, and
the car moves left and right across the screen
when the road or steering wheel turns. For
example, the first Crazy Cars game, Turbo
Esprit.

2) The car is always centered on the screen,
the camera is fixed to it, and the perspective
changes as the car and camera move across
the road (during turns); the camera does not
rotate and always faces along the road. This is
the most common type, used for both behind-
the-car games – WEC Le Mans, Chase H.Q. –
and in-car games, like Chequered Flag.

3) Complete freedom of movement. Both the
camera and the car can rotate 360 ​​degrees.
You can drive anywhere. This is a rare type
due to the difficulty of implementing it on 8-
bit computers. For example, Hard Driving or
our DRIFT!

Occasionally, something in between these
two basic types is encountered. For example,
in Crazy Cars II (which is generally of the
second type), you can drive almost
perpendicular to the road, and the camera
rotates accordingly.

In any case, for TTT, we chose the second
option, the most common. Its main difficulty
lies in the changing perspective (meaning the
imaginary lines along which the road’s
boundaries and all objects are located), which
imposes limitations on the depiction of large
objects along the roadside: the walls of
buildings facing the road must match the
camera position and the curves of the road.

You can simplify the task by placing houses
only on straight sections, but the perspective
of the side walls still has to change based on
the position of the car. It is for this reason that
such games rarely depict driving through the
city, and if they do, as in Chase H.Q. for
example, only “pencil-like” buildings
following the principles of pillars and trees
are shown.

And now for the disappointing spoiler: in
TTT1, there is no city either, no buildings
with a changing perspective. However, the
following image shows that we did conduct
some research in this area.

The idea was that if, on straight sections, the
houses were depicted quite far from the
roadside, then perhaps the perspective change
could be avoided. Ultimately, we left this
issue for future installments of the series.
(“It’s impossible to fit everything into one
game!”)

And in this screenshot, we see a different type
of house that would look good – on the
contrary – precisely in the turns, without any
change in perspective.

11

27.

28.

29.

30.

31.

A small “modification package” was prepared
for one of the cars to make it into a slightly
more modern vehicle.

We tried making one of the cars black for
more variety. It did not look good in the
screenshots and was removed. It might still be
used in a future game, though.

All these shortcomings were corrected in the
final version, the last of which by “installing”
the roof.

Some of the competitors’ cars had to be
modified based on how they looked on the
track. For example, this convertible had three
drawbacks: it looked too small, it was rotated
too much, and it raised questions about
whether it had a driver and passenger (a
passenger was necessary to allow mirroring).

But unfortunately, there was no place for it in
the first game of the TTT series.

All rival cars, except special vehicles, use the
same sprites for the two smallest scales.
These sprites also have pre-drawn offsets for
faster rendering and use a different sprite
format – with masks.

All opponents’ cars have five scale options
(not counting the two common distant ones).
Nearby variants are also slightly scaled when
displayed on-screen. The angle is chosen
based on the fact that we typically see cars
not directly in front of us, but slightly off to
the side. The sprite’s orientation changes
based on the relative positions of the player
and opponent, as well as the road’s curvature.

Some opponent car sprites have additional
phases for smoother changes in perspective:

Moreover, their number may vary (additional
sprites are drawn only for certain distances):

12

32.

33.

34.

The last of the competitors’ cars, the most
modern one, was completely redrawn, as the
first version turned out to be drawn at
suboptimal angles. Although the final version
does not look very different at first glance, it
looks better on the road.

This feature was excluded from the final
game: the modifications did not change the
appearance too much (for sure, few people
would have noticed them), but they made the
car look worse. By this time, there was
practically no memory left, and we cut off
any questionable details from the game.

To find the right angles, we created a three-
dimensional model. Since the car is only
visible from behind, the front part was not
included in this model.

One level uses a tractor as the game’s vehicle.
Like the cars, its basic sprites are in .tts
format, but it has a number of interesting
features.

Firstly, there are far fewer sprites than for
cars: only one degree of rotation is
represented. Secondly, to save memory, only
half of the sprite depicting straight-ahead
movement is stored; the other half is
displayed mirrored. This is also the only
game vehicle that shows wheel movement.
Finally, there’s the front of the tractor, which
is represented in a different format, with an
automask. This is necessary for smoother
movement of this element. And lastly, Sven’s
torso is rendered.

In gameplay, the tractor’s maximum speed
has been significantly reduced, which is
logical. It must be said that at high speed, it
would be impossible to complete this level,
where you have to drive side by side with
Uncle Björn.

The smoke from the exhaust pipes of the cars
and tractor is realized using this set of small
sprites with automasks:

13

35.

36.

37.

This mock-up shows tyre marks when an
opponent’s car starts. It never made it to
implementation. The game only features the
braking marks of the player’s car.

This animation is completely unrelated to the
original object and, in fact, isn’t even tied to
game coordinates: the collision always occurs
in the center of the screen, next to the car, and
to animate the objects flying off, it’s enough
to use the same sequence of screen
coordinates each time. Regardless of the car’s
speed and its position on the road, a knocked
down sign moves sideways offscreen and
slightly upward, while a knocked down
barrier moves up and down.

A pair of these sprites move upward and
gradually change appearance from the first to
the last sprites in the set.

There’s a car with exhaust pipes on both
sides, and for it, the smoke doesn’t appear
twice, but constantly shifts sides. It actually
looks “even better”.

When the cars start moving, the smoke
disappears. Only for the tractor driven by
Sven does it appear continuously. This
procedure was originally intended for this
vehicle. The smoke sprites are even stored in
the same set as Sven the tractor driver and the
tractor part.

Technically speaking, the barriers on the road
are the same as cars. Most of their AI and
engine sounds are disabled, and their speed is
set to zero. The collision detection procedure
is the same, and rival cars interact with them
in the same way as they do with each other.

Visually, the barriers have transparent parts
between the slats. In reality, there is a texture
painted there that repeats the texture of the
road, since this type of sprite uses an auto
mask, which does not allow transparent parts
inside the sprite.

Some objects (barriers and turn signs) can be
knocked down. (Or they could, but the player
is prohibited from doing so, like in the slalom
level.) It works like this: when a collision is
detected and processed, the original object is
removed, and an animation is triggered
showing it flying off.

14

38.

39.

It could have been done with sprites, as in the
game DRIFT!, but the procedural method is
more compact and faster.

There’s no perspective change or fade-in/out
animation. But it looks perfectly acceptable
in-game. And, of course, we didn’t forget to
disable this procedure for the motorcycle
level.

Braking marks are a procedural output onto
the road surface of a pattern like this one,
consisting of two frames with fixed
coordinates:

To display the road on the screen, in addition
to the current segment (and, of course, the
characteristics of all visible segments), two
more values are required: the position of the
vehicle on the segment (i.e., the distance
travelled from its beginning; as a rule, it
ranges from 0 to 255) and the transverse
position of the vehicle (and camera) relative
to the centre of the road. These parameters are
used to calculate the location of the road
boundaries and of the related roadside objects
on the screen, and to construct a pseudo-
perspective.

The number of segments displayed is usually
small (in TTT1 there are 8 on the screen). The
segments are always perpendicular to the
camera; in turns, they can only be shifted left
and right (unlike in real 3D perspective,
where we would notice their rotation). By the
way, a consequence of this are the “physical
properties” of such pseudo-turns: the distance
travelled by the car along the inner radius is
the same as along the outer radius. In
advanced engines, this can be adjusted, but
that is a separate topic.

In the schematic diagram above, the main
lines show an approximate representation of
the road for a situation where the vehicle is
somewhere at the beginning of the segment
and in the centre of the road, and a turn is
visible ahead. In accordance with perspective,
the screen height of the segments decreases
towards the horizon, and the edges of the road
converge (usually not completely) towards
the centre of the horizon when there are no
turns. Since the perspective is not real, its
accuracy depends solely on the programmer’s
vision.

The road in the map consists of segments of
equal length, each of which has a set of
properties that may vary depending on the
engine: turn value, roadside objects, road
width, markings, and so on. Some games
specify the height (or height increment) for
building real ascents and descents.

Let’s examine the general principles of
calculating and displaying roads on the screen
for graphical engines of this type.

15

40.

41.

42.

Even if described briefly, calculating and
rendering roads is not a simple procedure. But
the funny thing is that their implementation in
the TTT engine violates many of the “canons”
described above. For example, the road is not
rendered segment by segment, but completely
before the objects are rendered, and from the
bottom up, and in general, it is not the road
itself that is rendered... But more on that later.

When the car starts moving, the height of the
segments on the screen begins to change
(dotted lines), and with it the location of
objects. And when the car and camera move
across the road (either the player steers or the
car “skids” in a turn), the perspective
changes: as one approaches the right
shoulder, the right edge of the road becomes
more vertical, and the left edge becomes more
horizontal (light grey lines in the image).

The road calculation procedure must take into
account all of the above and output at least a
set of horizontal coordinates for the left and
right edges of the road for each line displayed
on the screen. In the case of “real” descents
and ascents, when each segment also has a
height (not screen height, but “above sea
level”), the procedure will be more
complicated.

With the most accurate engine
implementation, the road and objects on the
screen are drawn segment by segment,
starting with the farthest visible segment.
First, the shoulder and road textures are
rendered (textures may vary from segment to
segment) along with curbs (if any), then
roadside objects (the best option is to bind
objects to the far edge of the segment), and
then competitor cars. Yes, they really should
be rendered here so that they are correctly
occluded by nearby objects (this happens on
sharp turns) and nearby road segments (if the
road changes elevation sharply).

One can add a check to avoid rendering the
texture of segments hidden behind nearby
segments. However, roadside objects and cars
must be rendered in any case – they should
stick out from behind hills.

For now, let’s just note that one third of the
screen, 64 lines, is allocated for drawing the
road, and the road boundaries are calculated
not for each line, but for pairs of lines, i.e. we
get 32 values for the left kerb and 32 for the
right. First, these values are calculated for the
segments, and then a very rough interpolation
is performed for the lines between them.

In TTT1, each segment of the road map is
described by one byte. Only the direction of
the turn is specified (the two most significant
bits; if both are off, the road is straight), and
the remaining 64 values are assigned to
objects. The degree of turning, which can
only assume 2 possible values, is determined
by the sequence of values of two segments: 0-
1-0-1... is a smooth turn, 1-1-1-1... is a sharp
turn.

Changes in road width and ascents/descents
are not specified for each segment, but are
implemented using special procedures.

When the speed increases, the turning angle is
limited. This can be seen in games far beyond
the ZX Spectrum. At the same time, we
absolutely needed an additional sprite for the
player’s cars to allow them to move at very
low speeds, almost perpendicular to the road
(and on sharp turns).

16

43.

44.

The counter does not stop there, and once
reached another threshold, the road returns to
its normal width in the same way, then the
procedure is turned off. One can also force
the narrowing to end by selecting the “turn
off special objects” marker on the map.

However, behind the “Road narrowing (on
both sides)” sign, no actual narrowing occurs.
Rather, the warning signals a narrowing of
the roadside on “difficult sections”, as is
usually the case in reality.

As soon as the map encounters a “Road
narrowing (right or left)” sign, a counter for
the procedure that will perform this
narrowing is started. The counter increases
with each segment passed, and soon the road
boundary calculation program will begin to
apply the narrowing on the specified side.

The transition to such sprite is somewhat
abrupt (especially for the vehicle shown
above), but it was unavoidable. Only the
player-controlled tractor was spared, but it’s
essentially simplified and has its own unique
turn visualization features.

Ascents and descents are a separate, larger
topic. Let’s start by looking at these two
images:

Which one is a descent and which one is an
ascent? Or maybe it’s just a narrowing of the
road? In fact, there is no clear answer. If we
focus only on the road, we can see the first
image at the beginning of the descent (the
road plunges somewhere), and then, when we
are already descending, we see the second
image: at the bottom, the descent ends, and
the road returns to horizontal. The same
applies to the ascent, only at first we see the
second image (the road goes uphill in the
distance), and then, as we approach the top of
the ascent, we see the first: the horizon and
the entire landscape are still hidden behind
the top.

Accordingly, in order to understand exactly
whether it is a descent or an ascent, it is
important to see the change in the picture, but
even more important is the location and
movement of the horizon line and other
objects. Nothing conveys descents and
ascents as well as the movement of the
background.

So, as we approach the ascent, the road in the
distance, along with the horizon line, begins
to rise very slowly, as if creating a foundation
for the future ascent. And at its beginning, the
background rapidly collapses downwards, the
road bends accordingly, and now we see
mainly the sky. At the top of the hill, the road
straightens out, and the background returns
from behind the horizon.

That would be fine, but how can we
implement this in our engine if it does not
initially have the functionality to elevate
segments? Well, we are not the first to face
this challenge...

17

45.

46.

47.

The road boundary calculation procedures use
rather crude methods that, when there’s a
descent or ascent, additionally “bend” the
road. This method is extremely “fake”, but it
looks good in the TRAVEL engine, especially
when large mid-ground objects emerge from
the horizon on an ascent. Descents, however,
are a little less well done and don’t look as
impressive.

By the way, it’s interesting to note, when
playing various racing games for the ZX
Spectrum, how differently descents and
ascents appear. Sometimes the horizon
remains fixed, while the road rises from
below like a sheet of paper (Full Throttle 2,
Beverly Hills Cop). But this isn’t the
implementation one should aim for.

As we said, the road, along with the horizon
line, sometimes rises upwards. But how can
we display it if we only show the road in one
third of the screen? If we calculate its
boundaries for only 32 pairs of lines?

As trivial as it may seem, we need to
calculate a few more values ​​and display an
additional section of the road (in addition to
the eight displayed segments) beyond the
one-third of the screen. Of course, this raises
a number of questions: after all, we display
road objects only for eight segments. We took
an interesting approach: for distant cars, we
added a correction that slightly raises the
car’s screen coordinates when there’s a road
receding into the distance, as shown in the
following screenshot (the dotted line marks
the end of the main section of the road). Yes,
this is actually a car from the eight displayed
segments, but visually, it’s already in the
additional segments. Another “fake” for the
sake of visual beauty. And what about the
poles in this additional section of the road?
It’s simple: they aren’t displayed. Now you
know.

The procedures for rendering the additional
part of the road are also closely related to
rendering the background, cleaning the
necessary areas and drawing the road texture.

Another nuance: when the background moves
up and down, the colour attributes at the
horizon also change. In the game, colour is
not formed in the screen buffer, but is always
displayed directly on the screen. The two
parts of the game window at the beginning of
the level are coloured in specific colours
representing the sky and the ground.
Accordingly, only the lines on the horizon are
recoloured during the race. Sometimes this is
noticeable. Many other racing games do the
same.

Sections of “uneven road”, preceded by the
appropriate sign, are visually represented by a
striped texture, and the car rocks back and
forth on them.

Please note: stripes are also displayed on the
additional section of the road, but they are
(what can you do?) fake again. Basically, it’s
all a game of smoke and mirrors. But in the
second part of TTT, the procedure has been
refined, and the striped texture of the
additional section of the road is displayed
more correctly.

The same texture is used in tunnels, but there
it plays the role of a smooth road.

18

48.

49.

This sheet contains a complete list of objects
and predefined sequences found in the level
map.

At the bottom of the sheet, you can also see
the sky and road attributes used in the game.

You can see that there are not many notes. In
fact, this is just the final printout of this sheet,
made towards the end of development.

The principle of drawing roads is quite
unusual: in the game, it is not the road itself
that is drawn, but the roadside and the
“ground” behind it. The road itself is nothing
more than the initial clearing of the entire
third of the screen, filling it with a texture,
either a uniform “checkerboard” or a more
complex version with a striped road, where
the texture changes from segment to segment.
There is also the possibility of a smooth
transition between these textures.

Without rendering the roadsides, the road
looks like this (for clarity, we show the
transition from a uniform texture to a striped
one):

Then the roadsides are drawn, in two passes.
In the first pass, the first line from the bottom
is drawn (left and right), then the third, and so
on through the other lines. To do this, 32 pre-
calculated values ​​are used for the left and
right edges of the road.

Then the second pass: the second line from
the bottom and so on, one by one, using the
same values, but reduced by the width of the
roadside, which decreases towards the
horizon. That is, these lines are shorter than in
the first pass, and as a result, we get an image
of both the roadside and the ground behind it.

In the screenshot above, you can see that the
lines in the second pass, in addition to being
shorter, often start higher, not from the very
bottom of the screen. Therefore, the second
pass runs significantly faster.

19

50.

51.

52.

53.

54.

It is now difficult to say why such an unusual
method of displaying the road was chosen
initially, but it is used by all games running
on the TRAVEL engine.

As mentioned earlier, in the most correct
implementation of such engines, segments are
drawn from the horizon downwards,
simultaneously with all objects and vehicles.
In our case, the direction of road rendering is
irrelevant (unlike objects that are rendered
later).

In the image with missing road shoulders, a
certain graphic element of the road is clearly
visible on the horizon. The issue is that our
image of the road, which covers one third of
the screen and consists of eight visible
segments, has a drawback: it ends too
abruptly at the horizon.

To correct this flaw, a couple of additional
lines are drawn above the road on the horizon,
visually extending the road and following its
turns. This graphic, which we have tentatively
called the “distant road”, is displayed only
under “favourable” conditions.

Another element of this purpose can be seen
in the same screenshot: these “distant poles”.
Eight segments are not enough. The poles
appear too abruptly. So we decided to track
the contents of one more segment (this is fast,
as we are not calculating the road boundaries)
in order to display poles that have not yet
entered the main field of view. This is done
for two types of poles – streetlights and
power lines. Moreover, it is not the main
graphics of the poles that are used, but a
separate, very fast procedure that draws
points (inverting pixels) across a line.
Consequently, at the farthest distance, the two
types of poles are identical.

You have probably noticed the “ragged”
display of the roadside. This is due to the fact
that the horizontal lines for the last byte are
drawn using a noise-injected table rather than
a typical one:

The “ragged” roadside actually solves three
problems at once:

• It brings our image closer to the first initial
screen layout, which was based on a
photograph.
• It hides the rather crudely calculated road
boundary.
• It adds dynamism to the monotonous texture
of the road.

Without noise, the road would look like this:

The rain in one of the cutscenes is a cut in
half variant of a procedure from our game
Rikki-Tikki-Tavi.

The principles behind the implementation of
winter levels are quite interesting.

20

55.

56.

To test Travel Unlimited (in which,
incidentally, we encountered a similar error at
higher levels), an even more advanced
automatic gameplay system was developed,
capable of navigating turns and overtaking
opponents. It does not perform perfectly,
which is actually beneficial: it roughly
corresponds to the skill of an average player,
not always completing the level on the first
attempt. In addition, the game also
automatically “purchases” upgrades, without
which the higher levels cannot be completed.

There is a very unpleasant issue when testing
games: the case when individual levels and
cutscenes may run correctly, but when you try
to play through the entire game, at a certain
point a critical error suddenly occurs, the
game freezes and crashes. Moreover, it is
difficult to catch, because the conditions are
unclear: for example, it may happen on level
70 or after level 75.

Of course, no one would have the patience to
play through the game multiple times after
making changes, even with cheats. So in TTT,
we used an auto-play mode for this. The
levels are completed in a very rough manner
– collision detection is disabled for the cars.
This build can be run in an emulator at twenty
times the speed to quickly see if the game will
reach the end.

However, each individual level was, of
course, also completed many times in a
honest way to find the right balance.

The exhaust smoke also uses the automask
format, and it displays correctly in winter.

The car’s behavior has also been slightly
modified in winter levels, making it drift
more.

As we already know, our engine does not
render the road itself, but rather the roadside
and the ground behind it, and everything is
initially designed exclusively for a “black”
ground fill (unlike subsequent games on this
engine, where the ground is either “white” or
both options are available, as in TTT2). So, to
depict winter, we simply used inverted colour
attributes. Now we see light-coloured trees
against a dark background, and so on. Look:
even the shadows from the posts have turned
white against the dark background!

But what about the cars? After all, when the
attributes are inverted, they should look like
this:

To restore the normal appearance of cars
when attributes are inverted, sprite inversion
is used. For the player’s car (the .tts format
described above), a procedure is performed
during level initialisation that inverts the
sprite data, taking masks into account. These
changes are reversible, and when “spring
arrives”, the sprite returns to its original state
(the same procedure is performed again).

We can’t use this method for rival vehicles
(whose sprites use automatic masks).
Therefore, we’ve written a rendering routine
for them that adds on-the-fly inversion. It’s
slow, but we don’t have many winter levels.

21

57.

58.

59.

60.

So, we turned on the emulator and watched
the game play itself.

Another very useful mode used during
debugging and testing was “show cutscenes
only”.

The game only runs on computers with 128
kilobytes of memory. However, this is mainly
due to the large volume of various additional
objects and cutscenes, while the TRAVEL
engine itself can handle 48 kilobytes.

Unlike DRIFT!, it uses a screen buffer rather
than the dual screens typical of 128K. Some
other games using this engine run on 48K.

The method of drawing horizontal markings
is based on the same principle of drawing a
road, or more precisely, road shoulders: the
markings are drawn from edge to edge of the
screen, and then cropped by the shoulders, so
that we only see the part on the road. If we do
not draw the shoulders, we will see the
following image:

“There are no road markings in the game”
sounded like a reproach to us, but that’s not
entirely fair. We just didn’t want to repeat
what we had seen many times in other games,
so instead of longitudinal markings, we used
transverse ones: pedestrian crossings, the
finish line, and a couple of simpler elements.
And we can definitely be proud of how it
looks.

As for the longitudinal markings, there are no
problems with them, and we have already
inserted them in the second part of the TTT
series.

The following set of textures is used to
display pedestrian crossings and the finish
line:

So, the issue of trimming the road markings at
the edges has been resolved. But what about
the correctness of the perspective? To be
honest, there’s nothing we can do about it.
The markings are drawn exactly as they
appear in the texture map. For example, just
count the number of stripes here:

But in motion, everything looks just fine!

Checkpoints and rails are drawn in a similar
way, but instead of using a texture, a single
byte is repeated across the entire width of the
screen.

The zebra crossing is depicted three times in
it, for different distances, but for the finish
line we decided to use only one variant,
simply drawing a piece of different heights at
different distances.

...and here:

22

61.

RDSEGLN DEFB 8,7,5,4,3,2,2,1
DEFB 7,7,6,4,3,2,2,1
DEFB 6,7,6,5,3,2,2,1
DEFB 5,7,7,5,3,2,2,1
DEFB 4,8,6,5,4,2,2,1
DEFB 3,8,6,6,4,2,2,1
DEFB 2,8,7,5,4,3,2,1
DEFB 1,8,7,6,4,3,2,1

62.

63.
There are many types of races in the game:
CHALLENGE, CHECKPOINTS, TIME
TRIAL, DUEL, CHASE, JUST DRIVE,
SPEED SCORE, and SPECIAL EVENT.
Here are the icons for each of them:

Before being hit by a train, the car passes
freely through a closed railway bar gate. It
turns out that in the face of such a disaster,
this detail is completely unnoticeable, so we
didn’t waste any extra bytes or time on it.

Incidentally, the first level was deliberately
designed in such a way that it was practically
impossible to avoid contact with the train
when playing for the first time and not
knowing about it in advance.

Rails must extend beyond the road, so unlike
markings, they are drawn after the road edges.

Based on this image with cells, a table of
visual dimensions of road segments (their
screen heights, i.e. the number of lines) was
developed:

The screen always displays 8 segments. The
cell in this image is equal to the minimum
possible height of a segment on the screen:
two lines. 32 cells mean 64 lines of height, or
one third of the screen, which is where the
road is displayed. The figure shows the screen
heights of the segments for 8 frames. This is
the degree of precision with which we see
movement on the screen. The position of the
car on a segment, which has a range of 0..255,
is reduced to a value of 0..7. At the start, you
may notice that the road and roadside objects
move somewhat jerkily at low speeds, and
movement begins slightly later than the start
of acceleration.

The height of the nearest segment ranges
from 8 to 1 cell (16 to 2 lines), while the
farthest segment shown always has the
minimum height of 2 lines. The segments in
the image are represented by a broken line
simply for the convenience of visual
perception during development, nothing
more. The dark cells are corrections for some
frames after testing the first version.

The final table (in pairs of lines) is as follows:

In fact, there are even more types of races,
because the last “special” type includes a
number of completely different competitions,
and even with the participation of unique
vehicles, both in-game and traffic. One of
these levels, “log trucks”, even has its own
icon on the status bar. Why not a separate
type?

23

64.

65.

66.

67.

Each type of competition has its own AI for
vehicles on the track (opponents, traffic,
special vehicles). The behaviour of an
opponent in a duel is certainly different from
that in a race, and a duel on public roads is a
unique competition with its own AI
characteristics. However, there is also a large
set of procedures that are common to all cars
in most cases.

In races the number of cars on the track
remains constant throughout the competition,
but when driving on public roads the traffic is
regularly updated: those that have long been
overtaken are eliminated, and new ones are
created ahead.

There’s also an interesting behavioral model
with the telling name “can’t be overtaken”. It
was later used in Rubinho Cucaracha.

Some types of races occur once (CHASE),
twice (JUST DRIVE) or three times (SPEED
SCORE) throughout the game, while
CHALLENGE, CHECKPOINTS and TIME
TRIAL are the main types of competitions.

To help the AI ​​of rival cars quickly and
effectively assess the road situation, we used
a technology we called the “situational table.”
There’s even a debug mode that displays the
table visually. Here it is, in the upper left
corner of the screen:

It contains the approximate location of the
cars – both the player’s and the opponents’.
The table is small in size, allowing the AI to
analyse the situation on the track quickly and
efficiently. Without it, the behavioural
procedures for each car would have to go
through the parameters of all the other
opponents’ cars, as well as the player’s car
separately, and all this in an inconvenient
form. It is difficult to even imagine how slow
this would be.

It is thanks to the situational table that
opponents can slow down behind slow cars,
overtake (but without changing lanes if the
player’s car is next to them), and try to pass a
player who has slowed down when they
appear behind them. It doesn’t always work,
but they try.

This technology played a crucial role in the
gameplay of games using the TRAVEL
engine. Many other highly advanced racing
games (we won’t point fingers) lack this
feature, and the cars simply “don’t see” each
other or the player.

The speed of the vehicle does not decrease
when driving uphill; it does not depend on the
terrain.

Is it possible to hit Uncle Björn’s tractor on
the first level?

24

68.

69.

70.

71.

72.

The game is divided into four decades, from
the 1950s to the 1980s, with most of the plot
taking place in the 1950s and 1960s.

The front part, separate from the rear, looks
amusingly narrow.

The timber trucks consist of two vehicles that
drive at a fixed distance from each other
without changing speed or lane. This means
that these are not just two sprites, but two
data structures for vehicles. We also had to
resolve several issues to ensure the visually
correct positioning of their parts on the screen
and their cropping when the timber truck
moves off frame. The rear part takes into
account the position of the front part, and a
restriction is used on the maximum horizontal
distance between them on the screen.

However, in TTT1, some levels still have a
looped section, which is implemented in a
simplified way: at the “joint”, the map has
identical fragments, and at the right moment,
the car, along with its opponents, is
transferred to the specified fragment. Aside
from the first meeting with Uncle Björn, the
“loop” is used in the level with the timber
trucks and during the duel with Johannes,
where he gets into an accident. We don’t
really even notice it, and this method is only
intended to close a certain logical hole during
the race, which is most obvious in the episode
with the tractor.

When Sven’s vehicle is near the tractor, it
automatically moves to the opposite side of
the road, and attempts to move back are
blocked. However, there is no strict
enforcement, and indeed, you can achieve
this, by moving in advance to the left roadside
and accelerating. But this will not make any
difference. On this level, collisions are
allowed, and as soon as Sven catches up with
the tractor, he and Björn will start a
conversation.

But what happens if you miss the tractor, or
follow it to the end of the level through all
these crossings without talking to Uncle
Björn?

It won’t work. From the moment the tractor
appears, a looped section of the track begins.
We will only be “released” after the dialogue.
The tractor won’t go anywhere either, but will
wait at the horizon.

Finally, one more question regarding the
episode with the tractor: it is necessary to
remove any extra vehicles from the track, if
there are any. This is easily accomplished: all
vehicles in front of us accelerate sharply (this
is very noticeable) and disappear over the
horizon. The vehicles behind can simply be
removed.

All races in the game are point-to-point.
There are no races consisting of multiple laps.
This feature appeared in later versions of the
engine.

25

73.

74.

75.

Its rendering utilizes separate rendering
procedures, allowing the rocks to follow the
curves of the road. The graphics format is the
same as for some larger interface elements –
with simple column-wise packing, which
lends itself well to the uniform black fill of
the rocks.

Shortly afterwards, the road passes by a rocky
ridge.

This level (which, incidentally, appears after
about an hour and a half of speedrunning) is
notable for its detailed map design, with
multiple changes of scenery and a wealth of
other details. For example, the race begins at
a “Falling rocks” sign.

… and then, rising in front of us from behind
the horizon, that same lighthouse appears,
already close by.Before each decade, a splash screen appears

with cars of that era and a large caption:
“50s / 60s / 70s / 80s.” Naturally, these
symbols are rendered using regular sprites. To
save space, only a part of the number “0” is
stored (2/3, to be precise), and the number
“5” is stored separately, as it is displayed only
once at the beginning of the game, and this
memory area is subsequently used for the
video buffer.

The font is also additionally packaged. The
packaging saves just over 100 bytes, but in
large projects, all optimisations are important
– the main thing is that they do not cause
harm.

Panoramic shots often logically connect to
other objects. For example, at level 45, we are
treated to a beautiful view of the rocky
coastline and lighthouse.

Then, after a short tunnel, the panorama
changes to the open sea...

26

76.

77.

78.

79.

Some panoramas were drawn based on
photographs, others were drawn entirely by
hand. For example, this screenshot shows the
first sketch for two future panoramas:

The arrow showing the distance travelled is
one of the font symbols. However, it is only
printed at the start of the race, and then a
scrolling procedure is used to move it
smoothly, moving the pixels directly on the
screen. Due to the specifics of the procedures,
it is impossible to precisely synchronise the
calculated distance and the movement of the
arrow, which is why the distance line on the
screen does not end with a cut-off, but turns
into dots: “the finish is somewhere here”.

The game font includes the letter ö. This is
specifically to write Uncle Björn’s name.

Interestingly, just two sprites were used to
depict the dynamic elements, which,
combined with the posts, create a good sense
of movement.

As you might guess, at that moment it
occurred to us that it was better not to
overload the panorama with a large number of
objects, but rather to prepare as many
different panoramas as possible.

In the same screenshot, you can see one of the
status panel options with a ribbon
speedometer and a slightly enlarged playing
area, which was not used in the final game.

Regarding the size of the playing area: its
height on the screen is 19 lines, and another 5
are taken up by the status bar. Actually, the
top lines are “fake” – they always display a
single-colour sky fill. The actual screen buffer
consists of the typical 2/3 of the screen (16
lines), as in most other racing games. In
addition, the top line is only used when
necessary, and usually only 15 lines are
displayed, which again slightly increases the
speed.

The only detail: when driving under
overpasses and in tunnels, the upper “fake”
part of the game area has to be temporarily
filled with black, but this is quite simple.

As one can see, some elements of the
graphical interface are also stored as font
characters and use the corresponding output
procedures.

27

80.

81.

82.

83.

Technically, the output of panoramas is
arranged in a very interesting way: as already
mentioned, they are stored in a packed form
(a specially created format), but they are
unpacked not as graphic data, but as a ready-
made program for displaying these graphics
on the screen as quickly as possible –
“hardwired” into the code.

But this was not because we were lazy, but to
save memory. After all, panoramas are stored
in a compressed format, and while the first
one takes up almost a kilobyte, the simplest
one requires less than 150 bytes. We only
saved one of the most detailed panoramas for
the aforementioned level 45.

In total, the game uses nine types of
panoramic shots that “pop up” from the
horizon. Of course, we rushed to show the
most beautiful and detailed ones in the early
levels. Later on, they became much simpler,
like this one:

In some levels, the main character has no
chance to reach the podium, or must get on
the podium but it’s unable to win the race.
This is implemented in a hilarious way: the
cars that must finish ahead are already at the
finish line! After all, at the start, we can’t see
the entire starting grid anyway.

The same method with visual screen
expansion is used in many subsequent games
based on the TRAVEL engine: Rubinho
Cucaracha (which features stationary clouds),
Travel Unlimited (where the striped gradient
has some dynamics on descents and ascents),
and all parts of the main TTT series.

Of course, a separate buffer is required for
unpacking. For this purpose, we used the
memory area which stored the data for the
train, which we will no longer encounter in
the game. This area is almost identical in size
to the largest of the unpacked panoramas.

At level 55, we see the airfield, the simplest
of the panoramic shots. But it’s “decorated”
with a plane taking off.

Keeping in mind the tradition of logically
connecting objects, we soon see the airport
control tower rising above the horizon.

Well, at the very beginning of the level, we
already saw the “Low-flying aircraft” sign,
and now we are convinced that it was there
for a reason.

28

84.

85.

86.

87.

And here’s another interesting detail:
although it seems that the trees appear to
grow larger as they move, this illusion is
achieved solely by their gradual emergence
(upward movement) from the background. In
reality, only one tree of a single size is used.

But the horizontal offset, as you can see, is
pre-determined. Moreover, copies with
different offsets look slightly different from
each other. In motion, this looks very
interesting – it adds a kind of dynamic noise.

The trees in the middle ground are not only
the most unique object in the game, not found
in any other racing game on the ZX
Spectrum: they were also very difficult to
implement. Many aspects had to be taken into
account when moving the trees and
displaying them on the screen. They had to
not only move smoothly, but also follow the
curves of the road to a certain extent (without
giving the impression to be moving
backwards), as well as “get along” with all
the changes in the landscape and background
(so that, for example, they would not detach
from the ground on an incline). Since the
landscape in the game quickly changes from
closed to open, the trees in the middle ground
should leave the screen in time. Their
movement actually follows its own rules, not
directly related to the current game situation,
but rather adapting to it.

As already mentioned, some panoramic plans
were deliberately simplified to save memory.
For example, this panorama...

In addition to the taking-off aeroplane, we
planned to depict a moving ship in one of the
panoramas. We didn’t really like how it
looked, so it didn’t make it into the final
version of the game.

The following mock-up was used for research
work on how to display trees in the middle
ground: which parts should be displayed
directly, which should blend into the
background, and which could be omitted
given the tree’s location. All this was done in
order to achieve sufficient fidelity with the
original prototype while maintaining high
speed.

Incidentally, the control tower was modelled
after the old (now defunct) airport tower in
the Finnish city of Oulu. After all, the action
of the game at these levels has moved to
Finland, following Eva.

...originally looked like this:

29

88.

89.

90.

91.

Naturally, trees use their own rendering
procedures, taking into account all the
features described above and allowing them
to be smoothly moved off-screen. Exactly two
trees can exist in the midground at a time –
either on the same side of the road or on
opposite sides.

The game uses manual gear shifting and a
“two-speed” gearbox, which is so
characteristic of arcade racing games. There
is also a neutral position. First gear engages
automatically when you start moving.

In some other games based on this engine
(Rubinho Cucaracha and Travel Unlimited),
gear shifting is automatic, and the joystick
button activates the turbo.

On the status bar, the current gear is shown
by changing attributes – “highlighting” the
corresponding icon.

This is perhaps the fastest and most
economical way to display user information
in the interface, and it is often used in ZX
Spectrum games due to the characteristics of
this computer’s screen memory area.

In the same way, part of the interface graphics
can be completely hidden: to do this, colour
attributes with the same paper and ink values
are used. This is how the digital speedometer
in the game Travel Unlimited works: the pre-
drawn value “888” on the screen is hidden via
attributes.

Drawing the railway bar wasn’t as simple as
it might seem: at different distances from the
camera, it can also be in different states:
closed, open, and in transition (opening or
closing). Moreover, since it’s positioned
horizontally or diagonally, rather than
vertically, our sprite “stretching” procedures
aren’t suitable. Furthermore, as the bar gate is
a rare object, it should not take up too much
memory. As a result, we composed it from
separate pieces, the number of repetitions of
which depends on the distance to the object.
The crossbar has only two thickness options.
It doesn’t look very nice when driving at low
speed, but overall, the problem is solved.

The game logic dictates that every second
railway bar on the level is closed in
anticipation of an approaching train.
However, only the first level has the two
railway crossings. Starting from the second
level, the memory area occupied by the train
is used for other purposes (unpacking
panoramic shots). Consequently, the train
sequence is no longer possible, but the game
never returns to the first level.

30

92.

93. 94.

This approach is doable if the game does not
require the screen to be completely cleared at
any point. Sometimes, attributes even conceal
part of the code. We did this, for example, in
the game Don Quixote.

This is a very interesting sheet, exploring the
use of panoramas, cars, backgrounds and
“pop-up” objects on different levels.

Also, in the upper left corner, you can see the
design of a one-byte format for the level
header, where individual bits describe certain
track parameters or the presence of such
parameters (in order to read certain values
later, if they are present). This compact
recording method is important to us because
we have so many levels.

All character portraits were drawn based on
random photos found online. The sprites use a
simple column-packed format, which is
further packed using a standard packer.

The characters’ names were chosen based on
statistics on the names of newborns in
Sweden in specific years. For example, if
Sven was around 20 years old in the mid-50s,
then he was born in the mid-30s.

Sven and Irma have the greatest number of
facial expressions (but the set is different).
Johannes and Uncle Björn can only open and
close their mouths.

Irma is the only one who is able to look aside:
at Marie sitting next to her, and at Sven
during the trip.

Moreover, in order to save memory, in this
game all the graphic elements of the “garage”
(upgrade icons) are hidden in two visually
empty lines of the screen.

31

95.

96.

97.

98.

How many different scale variants are needed
for the train sprite? If it were the same as for
the cars, then given the locomotive’s size, it
would take up a lot of memory. Fortunately, it
can be displayed in a more discretized way:
after all, if we manage to stop before the
crossing, the train will no longer approach
and grow larger. If we don’t, then the car is
moving fast, and the train will also approach
very quickly; the abrupt change in scale (only
three variants) won’t be noticeable.

The locomotive in the first level is not
fictional; it is a representation of the SJ Tp
model that was actually produced and used on
Swedish railways. It was built in 25
exemplars between 1953 and 1954, so we can
assume that the game takes place no earlier
than 1953.

This same locomotive plays a rather dramatic
cameo role in the film “A Man Called Ove”,
which, incidentally, also devotes considerable
attention to automobiles.

Indeed, this name was the second most
popular at that time. And for the other
characters, at the very least, the rule applies:
“Yes, that’s what he could have been called”.

By the way, we mentioned the logic behind
the appearance of the train: the program
determines that we are travelling too fast and
unleashes the train at the right moment. If we
did not start braking in advance, it is too late
to do so when the train appears. And even if
the car has already passed the crossing
visually, the train will still continue to move
along the bottom line of the screen, and it will
be impossible to avoid a collision. All this
happens so quickly that one doesn’t pay
attention to the details and compromises.
Only if we are driving slowly enough and
manage to stop before the closed railway bar
does the train appear, not instantly, but after a
short delay.

Although the locomotive has only three scale
options, it would still take up a lot of memory
space given its size. Logically, in the game it
is composed of a set of small sprites, many of
which are repeated several times. This also
solves the problem of image cropping at the
edges of the screen, as cropping is not
implemented for this type of sprite.

We prepared an image of a car being
destroyed in a collision with a train. It’s not
used in the game, as it was barely noticeable
in such a short sequence. Instead, the train
quickly carries a standard car sprite off-
screen.

32

99.

100.

.

101.

Another train-related detail that few people
noticed: after the dialogue with Uncle Björn,
there are no other cars on the road until the
very finish. This is, of course, because they
aren’t designed to interact with the train.
There would also be issues with the sprite
rendering order, since the train is rendered
outside of the object sorting procedures
(which is why there are no roadside poles
immediately after the crossing).

The tunnel is one of the most interesting
objects in the game. Its implementation uses a
large set of procedures. The most impressive
parts are the tunnel entrance...

This is achieved using fill procedures that
draw walls and ceilings positioned along the
road edges. The most important detail is the
mandatory change of the road texture to
“striped”. After all, there are no objects in the
tunnel itself, and movement is conveyed
exclusively by texture. The same texture is
sometimes used on some other sections of the
road.

Why didn’t we add lights like in Chase H.Q.?
For example, to avoid repeating that game
entirely, and also to save some memory and
development time... Although, in the later
second game, we improved the tunnels,
primarily by adding lights. Also, in TTT2,
cars finally started hitting walls.

In tunnels, of course, the background is not
displayed, but instead a solid fill is applied.
The display of all objects is reactivated just
before exiting the tunnel.

Tunnels can also be used to change the
background, including panoramas that can not
only “pop up” from behind the horizon, but
also turn on and off instantly, being masked
by a short section of the tunnel.

...and its exit.

33

102.

103.

104.

It is also worth mentioning that each tunnel
has a corresponding road sign at its entrance.
It is placed automatically when the map
encounters the identifier “tunnel start”.

The first level of the game is the only one
where a cutscene appears during the level,
dividing it into two parts. This scene is one of
the most detailed.

In addition to sprites, animation here is
conveyed by scrolling the car up and down
and, even more interestingly, scrolling the
trees – not only to the right, but also slightly
downwards. The same procedure is used in
the scene of the trip with Irma. The graphics
of the trees themselves are the background
graphics of the level.

Only Sven doesn’t look like himself.

The game script, written in screenplay format
(American style), contains 21 pages and 36
scenes. The duration of cut scenes in the
game is about 17 minutes. This is really close
to the classic formula of “1 page of script = 1
minute of screen time”.

Before writing the full script, a list of the
game’s levels and cutscenes was compiled,
along with a brief description of some of the
main events.

34

105.

106.

107.

108.

The images of cars on the screens introducing
each decade were, of course, also created
using the Ze3dex utility, but unlike the
gameplay graphics, they were only minimally
refined, as the result is acceptable for large
images.

The animation of the frame flying out from
behind the screen was done in 3D, and then,
using a hastily written utility, it was manually
redrawn into vector format – the coordinates
of the points for displaying the segments.

In the game, the same line drawing procedure
is used for the speedometer needle. This
resulted in 10 frames of vector graphics,
while the final frame uses raster graphics.

For the game Rubinho Cucaracha, the engine
was mercilessly simplified to its minimum
functionality. Subsequently, when creating
TTT2, this simplified engine was taken as a
basis, onto which tunnels, flyovers and other
previously discarded objects were “bolted on”
again. Some may find this illogical, but
coders know how difficult it is to work with
an “overloaded” engine, in which procedures
are scattered “in the gaps in the memory
pages”.

The artist copied the wallpaper pattern of
Sven’s house from the one in the house where
he was when he created this image.

35

109.

110.

Bonus 1 2 3 4 5 6 7 8 9 10
Main 6 53 3 54 46 2 7 4 51 58

11 12 13 14 15 16 17 18 19 20
50 30 12 8 34 19 24 10 13 57

111.

112.

113.

The game consists of 60 levels, and there are
also 20 bonus levels that become available
after completing the game and reloading it (at
the end of the main game, we are told how to
lauch them).

The bonus levels are designed as a hidden
game with its own title, Eva’s Race. In them,
we play as Eva, just like in the section of
main game set in the 1980s.

In fact, the bonus level tracks are basically the
same as those in the main game, with a few
minor differences: they lack panoramic shots
and objects appearing over the horizon, and
they use a different set of backgrounds. Here
are the matchings between bonus and main
level tracks:

The bonus levels are in general slightly easier
to complete than their corresponding main
levels, as they exclusively feature newer cars,
which are faster.

Overall, this game within the game takes up
minimal additional memory. Even its large
menu image is initially stored in the memory
area that will be used as a screen buffer.
Then, for the following visualisations, it is
copied to an area not used in the bonus game.

The font in the bonus game has been slightly
changed. Why? Because we can, we’d say.
To this end we used a new set of upper parts
of numbers and capital letters.

In other words, the most we could gain by not
making this bonus game would be a little
more space for the main game’s intro (for
example, for a picture in the menu). No
additional cutscenes would fit anyway.

What’s more, for Eva’s Race we wanted to
change the entire interface panel as well. But
we decided that was completely pointless

According to logic, the bonus levels should
drive on the right: the action clearly takes
place in Finland, and Sweden had already
switched to right-hand traffic by this time.
However, we see road signs on the left. It’s
simple: this is a factual error. The first 38
levels of the main game use left-hand traffic,
but in the bonus levels, the countdown
restarts – and traffic is on the left again. If
there were more than 38 bonus levels, not 20,
we would have seen the traffic switch, as in
the main game. The error wasn’t noticed in
time.

Main
Bonus

36

114.

115.

116.

The background in the game is represented by
images that repeat horizontally and shift left
and right at different speeds depending on the
turn. The width of the images is only 64
pixels (8 characters), and the maximum
height is 24 pixels. Yes, the scrolling is fast,
and a lot of images can fit in memory, but one
must agree that the size is very small. Many
other racing games, both ours and from
others, use a background that is as wide as the
screen, not to mention the killer four-screen
(1024 pixels) backgrounds of the game
DRIFT! The only thing that helps to accept
such a small size is that the mid-ground
objects, blending in with the background, add
variety and dynamics. Well, that and the
knowledge that in Chase H.Q. the
background pieces are only slightly wider, of
course.

A total of 19 backgrounds were drawn for
TTT1. Some are only used in the bonus game.

The height and filling of the background
decisively influences the sense of enclosure
or, on the contrary, of openness.

although there are simpler projects in
development on this engine, we wanted to
release the main game of the future TTT
series first. We plan to release several more
games in this series, as well as other racing
games, including for the 48K.

One of such games is Rubinho Cucaracha.

The game was planned to feature oncoming
cars in some levels, but they looked
excessively fast even at near-zero speeds, so
so we decided to abandon this idea. A set of
sprites for one such car was prepared.
Another idea was to have an oncoming car
passing by at the very beginning of the game,
when the player’s car is parked on the left
side of the road. This detail would have
further emphasized the fact that traffic in
Sweden drove on the left side of the road at
the time.

The work on the game engine began in 2013.
Although the project was put on hold for a
long time (and then reimagined), the game is
still based on that same road rendering code.
When we created DRIFT! and Maureen Miles
with completely different engines, we already
knew that the TRAVEL engine would
become the basis for our racing games. And

37

117.

1. Travel Through Time
2. Junan Ikkunan Läpi
3. Road North
4. Distant Lights
5. Road to Sortavala
6. Tarinan Jatko
7. On the Edge of the Land
8. Polkka (Finnish traditional)

118.

119.

The music in the game consists of AY
arrangements of compositions by the band
Tiurula from two albums (the eponymous
Tiurula and Tie Pohjoiseen): the game
features the tracks “Junan Ikkunan Läpi”,
“Road to Sortavala”, “Night in Hiitola”, and a
short excerpt from “Ensilumi” to accompany
failures. The main theme was written
specifically for the game.

One can imagine how interesting it would be
to see oncoming traffic in the level with the
timber trucks. Alas, in this case, overtaking
would become a lottery.

However, we considered it irrational to store
a full set of car graphics for such a small
vignette.

The CD included with the game features
instrumental versions performed by Tiurula.
During gameplay, you can choose to listen to
either AY or CD.

The list of songs on the CD differs from those
used in the game:

Why doesn’t the game use music during
races? First of all, it would significantly slow
down the gameplay. It’s not so much about
the music player itself, but rather about
adapting certain procedures to handle
interrupts. So instead, we worked on the
sound of the engines – both for the player’s
car and their opponents’. Yes, we are aware
of racing games that feature music during the
race, but speed is still much more important.
Besides, there is already plenty of music in
the game.

Some technical details: to increase speed, the
game actively uses the method of copying and
outputting via the stack (for those familiar
with assembler, these are POP–PUSH or LD–
PUSH constructs) with interrupts disabled.
These methods in particular do not combine
well with playing music. Where the use of the
stack is unpractical, LDI chains are used,
which, although significantly slower than
copying via the stack, are faster than the
LDIR instruction (which in “self-respecting”
games is used only outside the main loop).

For rendering the shoulder texture and other
solid fills, the fastest option was a chain of
LD (HL),r: INC L instructions with entry
point calculation.

38

120.

121.

122.

One episode of the game describes Sweden’s
transition to right-hand traffic – the so-called
Dagen H, which took place on 3 September
1967. When we were still considering
dividing the game into two parts and were
less constrained by data volume, we thought
about creating a short game scene on the
streets of Stockholm, where all you had to do
was to slowly re-park your car on the other
side of the road. Since there were no plans to
further roam around the city, we could have
cheated a little: we could have drawn the
nearby buildings in great detail and on a large
scale, while minimising the need to scale
objects. However, it would not have been
possible to completely abandon this need
within the framework of our engine – the
buildings would have needed dynamic
procedures related not only to scaling but also
to perspective changes.

This would take up a lot of memory in any
case, but one could do the same as with the
train in the first level: put this episode at the
beginning of the planned second block of the
game, and then not return to it and use the
freed memory for other purposes.

In the end, we decided against that scene, and
we wove this important event into the game’s
plot in a completely different way, resulting
in a more dramatic and touching episode.

In cutscenes where music is playing, instead
of employing the fast copy procedure on the
screen buffer, we had to use slower methods,
but that’s not critical there.

Probably not many people have noticed, but
the trees behind Sven’s house have grown
over the years. This speaks volumes about our
attention to detail. A second garage has also
appeared (which is, of course, more
noticeable).

The winter image of Sven’s house is
composed almost entirely of recolored
summer sprites. Falling snow, smoke from
the chimney, and the musical composition
“Night in Hiitola” by Tiurula add to the
atmosphere.

39

123.

124.

125.

126.

127.

There’s also the same scene at night
(repainted and with a few sprite changes), in
autumn with yellow trees, and in early
autumn – just a few “yellowing” attributes.

The frame rate in the game is around 25 FPS
when there are no rival cars nearby. This is
higher than in many existing racing games
with similar content on the screen.

At the beginning of the level, we see the
effect of vertical “curtains” – the game area
gradually appears from the centre of the
screen. This is implemented using attributes.
At the beginning of the level, the screen is
coloured with zero attributes (“black on
black“), and the curtains gradually colour it in
the colours set for the sky and ground.

There are also closing curtains that paint the
screen black. When they are active, other
procedures concerning attributes, such as
changing them on the horizon, are not
possible.

Collision checking with opponent vehicles
(or, more precisely, each traffic vehicle with
the player’s vehicle) is fairly simple: if an
opponent’s vehicle is below a certain
threshold (defined by a constant) on the
screen, the horizontal distance to the center of
the player’s vehicle is checked. If this also is
below another threshold, a collision occurs.

Most vehicles are similar in size, so they
share the same hitbox. Only the player-
controlled motorcycle undergoes some
modifications to the collision checking
procedure.

When computing the road, positioning
roadside objects and opponent vehicles, the
engine uses data smoothing:

VALUE = (CALCULATED VALUE +
PREVIOUS VALUE) / 2

For even smoother animation, this is done
twice. The main disadvantage of smoothing is
the delay in the movement of objects, which
is very noticeable in the game when
observing the movement of the posts relative
to the roadside. However, we could not do
without smoothing: the initial calculations are
too rough, and the movements would be
irregular. Roadside objects, instead of
smoothly moving sideways, would jerk left
and right.

The lag in movement is more noticeable at
high speeds. To compensate this negative
effect, in these circumstances only one
iteration of motion smoothing is applied to
roadside objects, while at low speeds two
passes are used.

Before the race begins, for roadside objects
that appear on the screen the position
calculations are made multiple times,
otherwise we would observe the posts slowly
moving to their assigned place due to the
position smoothing effect. However, another
implementation suggests itself – temporarily
disabling smoothing.

Interestingly, thanks to motion smoothing, the
effect of rival cars changing lanes was
implemented for free. It happened that, to
simplify the data, we initially decided to store
not the exact horizontal position of traffic cars
on the road, but only a flag indicating whether

40

128.

129.

Cutscene 14

EXT.
Sven’s home. There’s a SECOND
GARAGE next to the first. Night.
TWO falling stars.

INT.
Sven’s home. SVEN and MARIE.

130.

A very nice detail: in the episode where we
first see Marie and Sven meeting, two stars
fall one after the other above the house, rather
than just one, as in the opening scene. Here is
that moment in the script:

It’s funny that, before this moment in the
story, they had never spoken to each other.

The chase level is an obvious tribute to Chase
H.Q. It’s a pity that it only fits into the plot
once (and even then, it’s somewhat of a
stretch).

Similar to the Chase H.Q. series, we also
included a scene depicting the criminal’s
arrest. (The first Chase H.Q. on the ZX
Spectrum didn’t have this; it only featured
portraits of the criminals.)

We got by with using gameplay graphics and
a small set of sprites.

To calculate the horizontal coordinate of the
opponent’s cars on the screen, we take the
values of the left and right edges of the road
for the line of the screen on which the car is
located. We compute the middle of the road,
and then, depending on which of the two
lanes the car is in, we calculate the middle of
such lane is found. This coordinate is
smoothed based on the previous value.

Interestingly, when the road narrows, the cars
seem to steer on their own, even though no
procedure for this has been written.

But here’s the problem: we can’t always
determine the middle of the road and each of
the lanes precisely: if the road extends beyond
the screen, the edge values are equal to the
screen border: when calculating, we don’t go
beyond the byte values. As a result, the road
border seems to fall vertically downwards on
the screen; considering the perspective, this is
equivalent to a sudden narrowing. Instead of
approaching the screen boundary on the
perspective line, the car will suddenly start
moving vertically downwards.

No elegant solutions were found. To remedy
the situation, we locate the point where the
road is “clipped”, and then somehow adjust
the cars’ positions. The cars closest to the
edge receive an additional shift to the side
depending on their vertical position on the
screen (this is done for the 32 bottom lines of
the game screen).

they were on the left or right side of the road.
But when we needed to add the ability to
change lanes (for which we simply flip the
lane flag), it turned out that the cars on the
screen were already able to do that smoothly.
They do it a little too fast, but this generally
reflects their representation in the data
structure, where, as mentioned, there is only
“right” or “left”.

41

131.

132.

133.

134.

The overturned car was drawn based on a
visualisation of a three-dimensional model.

As with the train, we didn’t need many sprites
of different sizes, especially since the game
logic dictates that we don’t drive close to the
overturned car.

The game uses almost all of the computer’s
memory. There are no more than 20 bytes left
in each of the available memory areas.

The lamppost that we later used in Rubinho
Cucaracha was drawn while working on
TTT1. That’s the name of the file:
pole_other_game.

The trees in the game are drawn in mid-
ground and background, while only small
bushes are found along the roadsides.
However, during the development process
several tree variants were drawn and tested.

For this tree, an offset has been pre-rendered
only for the distant state, and overall the
number of scale variants is clearly
insufficient.

The main problem with using trees in this
engine is that a pleasant-looking, smooth
increase in size requires multiple scale
options, which takes up a lot of memory; in
addition, the large sprite size significantly
slows down the game, and there is the issue
of sprite clipping at the edges of the screen,
which, for example, is not so significant for
thin pillars.

42

.

135.

136.

137.

In the simpler and more casual game Rubinho
Cucaracha, where we didn’t place any
particular demands on realism, we used three
types of trees. Tree designs from the games
TTT1 and DRIFT! were used with some
modifications.

The last tree, unfinished and rather ugly, was
used primarily to test the stretching of
individual parts of the sprite. We also tried
using a sprite format with smooth stretching,
automasking, and clipping – similar to what
we use for opponent cars – but ultimately
decided to abandon roadside trees.

Note that for the farthest sprites, 4 variants of
horizontal offset were drawn; for the middle
level, 2; and for the nearest sprite, only one
single variant. This is the same approach that
was used for the poles in TTT.

The next image, which practically begs to be
included in some adventure game, also
emerged during the course of our “work on
the trees”. It’s clearly missing a knight on
horseback.

The main drawback of sprites with automatic
masking is that they can only be applied to
objects with fairly simple, closed, convex
outlines. (Based on how the automask is
constructed, the contour must remain convex
for horizontal segments.) For example, with
cars with open wheels, part of the background
would be erased between the wheel and the
body.

In TTT1, all opponent car sprites have convex
outlines, except for very small, insignificant
details. However, when creating Rubinho
Cucaracha, we had to figure out how to
reconcile automatic masking with exposed

43

138.

139.

140.

When the speed of his motorbike is near zero,
Sven puts out his leg.

wheels. Partly for this reason, opponent cars
have a wider body than the player’s car
(which, as in other games based on the
TRAVEL engine, uses a different format
– .tts with masks).

As a result, there are still some “holes” left in
the sprites of Rubinho’s opponents, as we can
see in the following picture, but they are very
minor.

This is a sprite that is simply rendered on top
of the main one, and it looks good regardless
the motorcycle’s angle.

For the motorcycle level, we generally made
do with a very compact set of sprites.

The ability to change the ground texture
during a race is used to depict water:
sometimes the road crosses a river or passes
next to a body of water.

Due to engine limitations, the texture must be
dark in any case, but small wave crests on it
look fine. Additionally, an animation has
been added to convey water movement
(between rendering lines, a procedure shifts
the texture).

Additionally, to make the water look a bit
more realistic, graphic segments were added
near the horizon, similar to what was done
with the “distant road”.

Unlike a full implementation of road texture
swapping, the ground (water) texture changes
in a somewhat simplified way – by whole
character rows (8 pixel lines each), so it
doesn’t exactly align with the movement of
road segments. In motion, though, it still
looks fine. Like many other shortcomings,
this was also improved in the second part of
TTT.

On the upslopes, you’ll notice that the
horizon line isn’t completely flat; it rises
toward the edges of the screen. This is
another additional graphic element (similar to
the additions to water and the “distant road”)
that enhances the visuals. It’s activated only
when needed and blends well with both the
background and the panoramas.

44

141.

142.

143.

The first version of the bridge designs was
more detailed:

The game uses a simplified version, in which
horizontal structures are procedural:

The coordinates of the horizontal beams of
the bridges are tied to the tops of the posts.
Since the nearest beams on the screen cover
all subsequent ones, only they are rendered. It
was also necessary to handle the case when
posts on one side of the road don’t appear on
screen, because screen coordinates are used to
position the beams. In this case, one can
reference the nearest visible post and draw the
beam in the opposite direction to the edge of
the screen.

Although the game is replete with cutscenes,
the locations where the action unfolds are
very few. Some appear only once, but most
are used for multiple scenes.

This forest location is one of the most
frequently recurring. It is where the
characters’ relationships develop over a
significant part of the story. Two other
frequently encountered locations are the
exterior of Sven’s house (starting with the
opening scene) and later its interior.

At the beginning of development, we didn’t
know what the cutscenes would look like.
This fortunate insight – combining large
character portraits with very small graphics
depicting the action – allowed us to fit so
many scenes into memory.

You’ve probably also noticed that the
cutscenes also use gameplay graphics. The
forest location uses the same background as
the races, the same opponents’ cars, and the
grass sprite is also used in the location with
Sven’s house. His car, however, is drawn
from a side view specifically for the cutscenes
(the sprite shows only the visible part, and
there’s an additional piece):

45

144.

145.

146.

147.

148.

In the car repair scene, the open hood is
drawn on top of the closed one, part of which
is partially painted over. We had to come up
with all sorts of tricks for optimization! The
additional piece of the car is also needed here,
just to position it correctly by the garage.

The scene on the ocean shore is almost
entirely made up of gameplay graphics. Only
the figures of Marie and Sven and a small
piece of the rocks were added.

And this cutscene with the logging truck uses
not only fully gameplay graphics, but also
some of the engine’s procedural rendering
routines.

In cutscenes in Sven’s house, with multiple
characters present, it was difficult to tell who
was speaking. Adding a colored stripe under
the character solved this problem.

By the way, have you noticed the color
coding of the dialogue? Sven always “speaks”
in yellow, Uncle Björn in green, Marie in
blue, Irma and Eva in purple (there’s a silly
mistake for Irma in the scene with the logging
trucks you just saw), and Johannes in white.

We prepared sprites for a bad crash with the
wrecked car spinning, but this idea was
ultimately abandoned.

In one of the final scenes, Sven and Marie are
sitting at a table reading a newspaper.
Initially, they were depicted, as before, on
opposite sides of the table, with an attempt to
place the newspaper in Sven’s hand. It didn’t
look right, and the idea suddenly struck me
not to draw any newspaper at all (implying
it’s just lying flat on the table), but instead to
move Marie to sit next to Sven.

46

149.

150.

And it worked! They seem to be looking at
the same point. We got away with a minimum
of additional sprite pieces.

The picture of Eva sitting on a window sill
was redrawn from a photograph taken
specifically for this purpose.

For optimization, the vertical parts of the
windows are made with a repeating sprite:

The overpasses that cars drive under are
another very interesting object. In their
implementation, they are partly like bridges,
and partly like tunnels.

Over the two pairs of supports, the ceilings
are drawn procedurally, with scale and
perspective corresponding to their placement.

When driving under them, they block the sky,
but the most interesting detail is that they cast
a shadow on the cars, which appears and
disappears dynamically.

This is implemented by overlaying a
procedural texture onto an already fully
rendered image, matching the road texture. It
is applied to the area where the car is drawn,
and of course it affects not only the car but
any objects under that texture. The car
“darkens”, while the road remains unchanged.

Moreover, if there are other cars passing
under the overpass at the same time as the
player’s car, additional pieces of this texture
are drawn to cover these cars.

47

151.

152.

153.

At the beginning of the game you can try to
complete a level an infinite number of times,
but at later levels you’re given a limited
number of attempts before the game is over.
To visualize these attempts we drew two icon
variations. The game uses the second one.
The procedure for displaying remaining
attempts was copied from the game Bonnie
and Clyde along with the file name. The
image with the car and arrow is called
“bc_hat” because in the cat game, lives were
represented by hats.

In a time trial, if the finish line or sector
checkpoint is crossed, but only after the time
has run out, the game counts it as losing.
Which makes sense, even though in many
other games this this happens differently.

In a duel, if the player and opponent visually
cross the finish line at the same time (even if
the opponent appears slightly ahead), the
victory is usually awarded to the player.

Level maps in all racing games for 8-bit
computers are generally quite uniform: they
consist of similar sections of straights and
turns, to which all the objects implemented in
the game (if any) are added. And uniformity
is actually a good starting point for
optimization. To fit a large number of tracks
into memory, we use methods to store maps
as compactly as possible. In all games on the
TRAVEL engine, a reserved memory area is
used for the current track, where the map is
built before the stage begins using procedures
and fairly compact source data. In TTT1, this
relies on a large number of predefined

segment sequences. In the image below, a
“typical” chain of 256 segments is shown,
divided into 16 sections. These segments
include turns and straightaways, indicate
roadside objects, some signs, pedestrian
crossings, and inclines. A game map can
simply specify: “use the standard sequence,
starting from section #0 and with a length of 3
sections”.

Moreover, for some track alterations (say,
entering a tunnel or starting a narrow road),
the same data can be used, but it will be
rendered slightly differently on the screen: for
example, in tunnels, only the turns will
remain.

We didn’t hesitate to use this same array
almost unchanged in Rubinho Cucaracha and
Travel Unlimited.

But this isn’t the only set of predefined
segment sequences in the map. There’s also a
list of short but more unique sequences. You
saw it on the same sheet as the list of all
objects. For example, this is how we defined
overpasses with appropriate approach routes,
short tunnels, different types of bridges, long
rows of road posts, and so on.

48

154.

155.

 .

156.

157.

The character animations for cutscenes are
collected in one file.

There’s also the option of accessing a map
from another track. Let’s say memory is
running low, and the player is unlikely to
remember what happened on level 5 by the
time they’re on level 55. Especially since the
competition type is different, as are the cars,
the background, the color scheme, or maybe
it’s night or winter... One can simply write a
command to jump to the data at a specified
marker and repeat part of the other track.

By the way, to walk up and down, the
characters use only one sprite, which is
mirrored.

To show a car driving out of a garage, a set of
sprites with changing lighting is used.

In the same way, Sven, entering the garage,
disappears into the shadows.

The visualization of the collisions with flying
debris is clearly inspired by the game Chase
H.Q. The debris uses a four-frame animation
and flies off along various trajectories.

Night races are no different from daytime
races in terms of gameplay or technology. A
darker color is used for the sky, but the main
visual difference is, of course, the headlights.

This is implemented using just one single
specially drawn sprite: the image itself is
“white”, and the mask is chequered.

When this sprite is rendered, the “white”
pixels of the headlights always land on the
“black” pixels of the road, creating a solid
bright spot. At the same time, other objects
seem to actually be “illuminated” without
being completely overwritten, since the grid
of “white” pixels also falls on them.

49

158.

159.

160.

It was only some time after the game’s
release, while working on the second part,
that we realized that we’d actually overdone it
with the “light” texture, which should have
been much simpler:

In this case, the cars in the headlights’ light
will no longer show the erroneous checkered
rectangle that was noticeable in TTT1. In the
second part of the game, the corrected texture
is used.

Uncle Björn’s tractor, like the logging trucks,
uses its own long-range sprites, so the number
of scales drawn is greater than for the cars.

For the two closest distances, the wheels’
rotation is drawn: every second frame,
additional pieces are rendered on top of the
already drawn sprite.

At the nearest distance, part of the tractor
driver’s torso is drawn as a separate, much
narrower sprite for optimization.

The work on the title screen and the poster
was carried out simultaneously. Of course,
the existing 3D car models were used. Then,
based on photographs (technically it’s
Norway, not Sweden, though part of the
game’s story takes place there)…

For the countdown, we used a dynamic font, a
relatively rare feature in ZX Spectrum games.
The numbers appearing on the screen grow in
size. To achieve this, we used two sets of
characters and the capabilities of one of our
sprite formats: first, the numbers are
displayed in a smaller size for a very short
time, then in a larger size, with gradual
vertical stretching applied (using the same
sprite format as for the opponent cars). For
the “GO!” text, we limited ourselves to a
single font size.

50

...we added contour strokes, blur, and
embedded the renders of the 3D models...

...merged it with the existing image...

…prepared the base image for the poster’s
background…

...drew a watercolor sketch on paper...

…made numerous digital touch-ups and came
up with the final poster:

51

161.

162.

163.

164.

And similar methods were used to create the
loading screen on the ZX Spectrum:

The design of the final scene included images
of trees. They didn’t fit in memory, and
besides, they didn’t really enhance the
picture. You can also see a more detailed
reflection animation. In the game, a single
mirrored sprite is used instead.

The game trailer is the most popular of all our
videos.

One of our favorite “divertissements” was
checking how the game’s graphics (especially
the intro) looked in monochrome. After all,
that’s exactly how many of us saw computer
games in the late ’80s and early ’90s.

52

165.

©2025 MANU & KIT

Are we happy with the result? It’s not a thing
we can say about every game, but in this case
– definitely yes. Travel Through Time Volume
1: Northern Lights can certainly be
considered one of our best games and one of
the best racing games for the ZX Spectrum.
Sales showed that the community agrees with
us.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56

